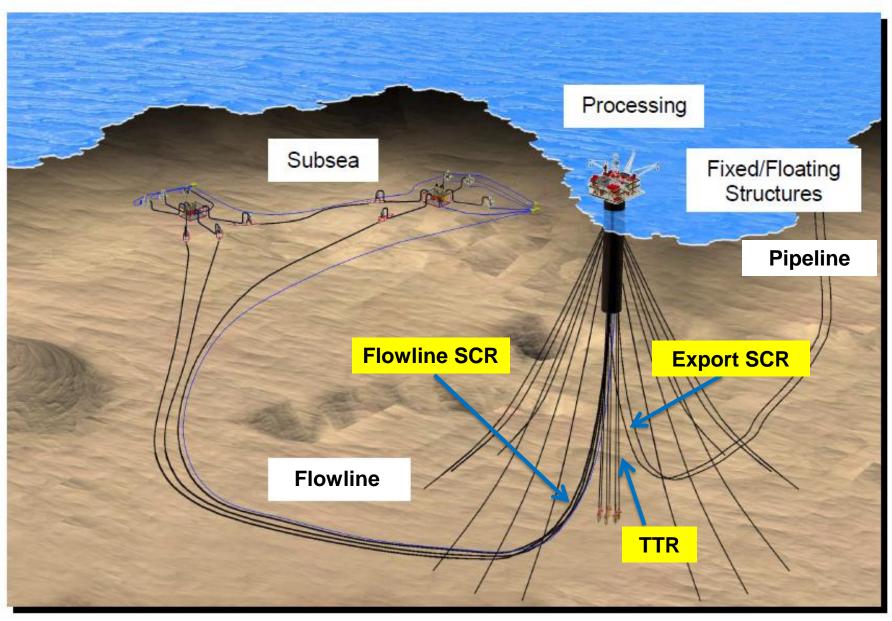
Deepwater Flowline & Steel Catenary Riser Design Concepts

Prof. Han Suk Choi

POSTECH Graduate School of Engineering Mastership (GEM)

Sth World Ocean Forum 2014

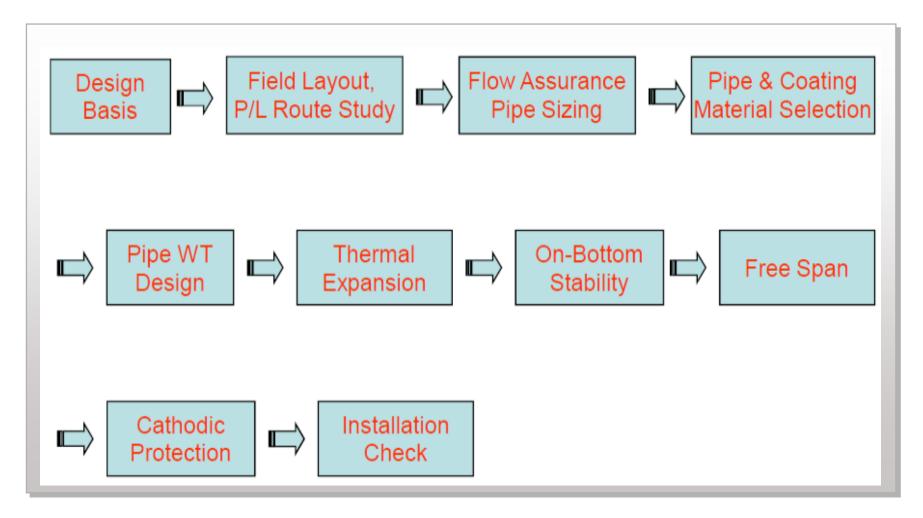


Contents

- 1. What are flowlines and steel catenary risers (SCR)?
- 2. Flowline Design Concept
- 3. SCR Design Concept

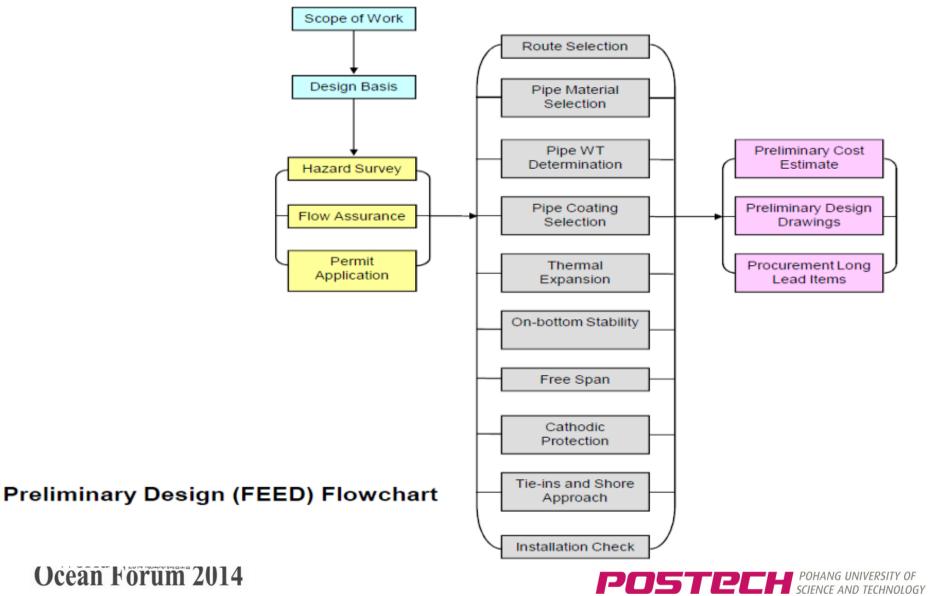
Flowlines & SCRs

8th World Forum 2014


What are flowline and SCR?

- 1. Deepwater ?
 - 200 m (Geological condition Continental Shelf)
 - **300 m** (Economic limit of fixed platform & BSEE, USA)
 - 500 m (Market analysis by Douglas-Westwood)
- 2. Flowline ?
 - Flowline is from wellhead to platform, (unprocessed hydrocarbon
 - Pipeline is export from platform (processed hydrocarbon)
- 3. Steel Catenary Riser (SCR)?
 - Curved vertical portion of flowline/pipeline made by steel pipes
 - Best technical and commercial riser for deep and ultradeepwater

Steven Forum 2014


Flowline Design Procedure

Stewarld Forum 2014

Flowline Design (FEED)

Ocean Forum 2014

Design Basis for Flowline

Design Codes

- API, ASME,
- DNV, BS

Design Data

- Field & Environmental Data
- Pipeline Data
- Geotechnical & Soil Data
- Design Methodology
 - Route
 - D & WT
 - On-Bottom
 - Expansion
 - Span
 - CPS
 - Installation

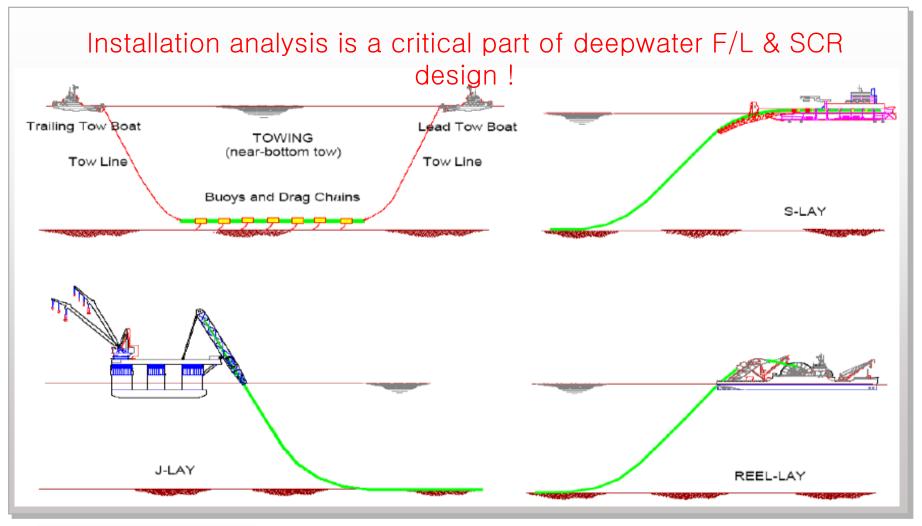
ocean Forum 2014

Considerations on Pipeline Design

Pipe Size

- Design Pressure (@ wellhead or platform deck)
- Design Temperature
- Pressure and Temperature Profile
- Max/Min Water Depth
- Corrosion Allowance
- Required OHTC Value
- Design Code (ASME, API, or DNV)
- Installation Method (S, J, Reel, or Tow)
- Metocean Data
- Soil Data
- Design Life
- Fluid Property (sweet or sour)

Stand Forum 2014


Flowline Analysis – Wall Thickness

- Burst
- Collapse
- Combined Bending & External Pressure
- Buckle Propagation

Design Codes for Pipeline/SCR

	Upper Level Code		Practical Code	Common Code
Oil	F/L	DOI 30 CFR part 250	ASME B31.4	
	P/L	DOT 49 CFR part 192		API-RP-2RD
	F/L	DOI 30 CFR part 250		API-RP-1111
Gas	P/L	DOT 49 CFR part 195	ASME B31.8	
Oil & Gas	DNV OS-F101 Submarine Pipeline, DNV OS-F201 Dynamic Risers			
vorld ean Forum 2014			PO5	POHANG UNIVERS

Pipeline Installation Methods

Ocean Forum 2014

Design Basis for SCR

Design Codes

- API, ASME,
- DNV, BS

Design Data

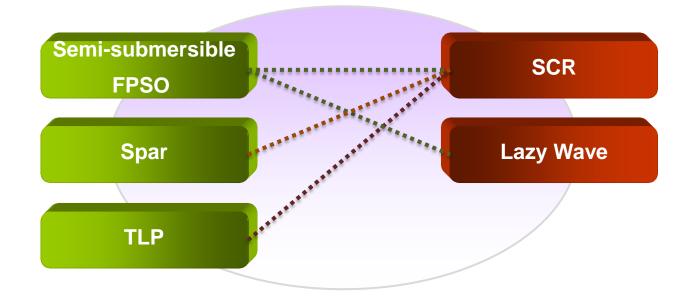
- Field & Environmental Data
- Flowline, SCR and Floater Data
- Geotechnical and Soil Data

Design Methodology

- Same as Flowlines
- Dynamic Behavior & Fatigue Analysis
- No model test can be done for SCRs

POSTPCH POHANG UNIVERS

Why SCRs are best for deepwater ?


- 1. Low cost
- 2. Conceptual simplicity
- 3. Significant structural capacity
- 4. Ease of fabrication and offshore installation

Floaters & SCR

Wet tree tied back to floaters

Most contributing factor:

• Fatigue knockdown due to sour service

St World Forum 2014

Design Criteria of SCR - Strength

- Strength by API-RP-2RD
 - $\sigma_{e} < 0.8 * \sigma_{y}$ for extreme
 - $\sigma_{e} < 1.0 * \sigma_{y}$ for survival
- Design Life (DL) = 20 yrs
- Factor of Safety (FOS) = 10 for motion fatigue 20 for VIV fatigue

Design Criteria of SCR - Fatigue

 $\label{eq:D_combined} D_{combined} = FOS_{sour\ service} * (D_{Motion} + \ 2 * \ D_{VIV} + \ D_{VIM})$ where

$$\begin{split} D_{combined} &= Combinded \ Fatigue \ Damage \\ FOS_{sour \ service} &= Knock \ down \ factor \ (depends \ on \ string \ / \ diameter) \\ D_{Motion} &= Unfactored \ fatigue \ damage \ due \ to \ vessel \ first \ and \ second \ order \ motion \\ D_{VIV} &= Unfactored \ fatigue \ damage \ due \ to \ riser \ VIV \\ D_{VIM} &= Unfactored \ fatigue \ damage \ due \ to \ hull \ VIM \end{split}$$

Overall Fatigue Life = DL * FOS (10) * Installation (1.053)
1 / D_{combined} > 211 years = Feasible solution

Robustness solution = 3 * OFL = 633 yrs
Stress
Stress</

- Riser analysis by Flexcom-3D/Orcaflex/Riserflex
- VIV fatigue analysis by SHEAR7
- Wall thickness
- Strength analysis
- Wave fatigue
- > VIV analysis
- Hull VIM analysis

8th World Forum 2014

- Dynamic strength analysis
 - Co-linear wave and current load
 - Static vessel offsets + one failed mooring line
 - Vessel motion by RAO
 - Von Mises stress by effective tension, bending, and hoop

- Time domain vessel motion fatigue
 - 1st and 2nd order motion
 - Long-term sea-states in up to 8 directions
 - Time-trace effective tension and bending moment
 - Fatigue damage rates from each sea-state and direction are factored by probability of occurrence.
 - Total riser fatigue damages by Miner's rule

- VIV fatigue analysis by SHEAR7
 - Current in plane of the riser and normal to the riser
 - Strake efficiency by reduction in the VIV amplitude
 - Lift coefficients vary to ensure target amplitude
 - VIV fatigue damage for each long-term current is factored by probability of occurrence.
 - Total fatigue damage is obtained by summing the factored fatigue damage rates.

- ► Hull VIM
 - Hull VIM occur for reduced velocity

$$V_{\rm r} = \frac{V * T_{\rm n}}{D}$$

where

 $V_{\rm r}$ = Reduced velocity

V=Current velocity

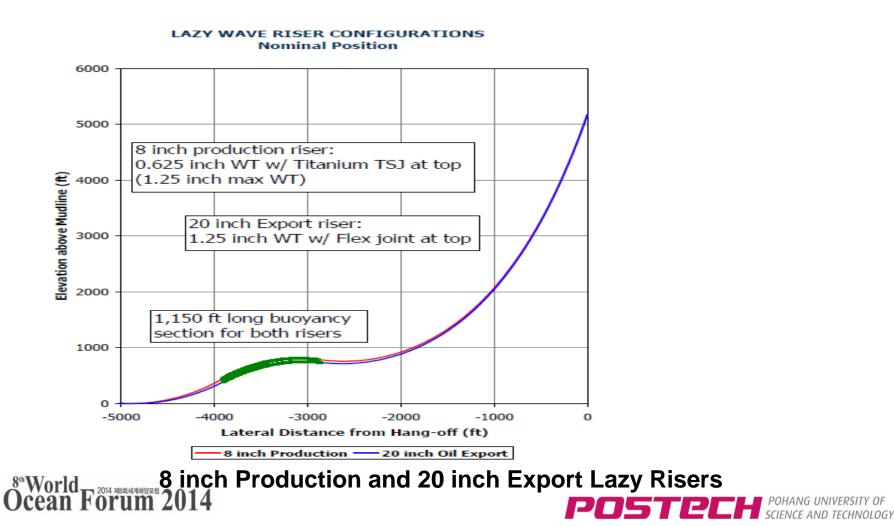
 $T_n = Surge / Sway natural period$

D = Hull diameter / column dimension

- Motion amplitude is calculated for current bin w/ VIM
- VIM response is simulated in the time domain

St World Forum 2014

SCR Design – Interface


- Floater hull structures
- Floater mooring system
- Top hang-off system
- Subsea layout
- Flowline/pipeline
- Metocean data
- Installation

Other Solution – Steel Lazy Wave

- Steel lazy wave riser is a feasible solution with SS & FPSO
- ➢ Shell BC−10 field offshore Brazil (2013)

Other Solution - Steel Lazy Wave

- Steel lazy wave riser can not be used for production from SS & FPSO, unless:
 - criteria is relaxed or
 - sour service knockdown is determined to be less than assumed

Steel Lazy Wave Risers

- Caesar Tonga installed first steel lazy wave riser for Spar (2012)
 - Green Canyon block 683 (GOM)
 - Water depth: 1,500 m
- World 1st steel lazy wave riser for turret-moored FPSO (2009)
 - Shell Espirito Santos FPSO on Offshore Brazil
 - Water depth: 1,780 m
- > World deepest steel lazy wave riser for turret-moored FPSO (2015?)
 - Shell Stone FPSO (GOM)
 - Water depth: 2,900 m

Conclusions

- Design of flowline is controlled by Design Rules.
- Design of SCR is controlled by analysis.
- Design of flowline & SCR is controlled by Installation.
- Steel Lazy Wave risers are possible in water depth greater than 1500 m.

The End

Thank you